Optical Network on Chip in 3D Architectures

Sébastien Le Beux

Ecole Centrale de Lyon, France
contact : Sebastien.Le-Beux@ec-lyon.fr

October 20th, 2011
Outline

1. Introduction
2. Optical Network on Chip
3. Layout Guidelines
4. Experimental Results
5. Conclusion and Future Work
MPSoC Design Trends

• Multiple layers \rightarrow multiple technologies (3D integration + heterogeneity):
 • computation \rightarrow electrical layer
 • communication \rightarrow optical layer
MPSoC Design Trends

- Multiple layers \rightarrow multiple technologies (3D integration + heterogeneity):
 - computation \rightarrow electrical layer
 - communication \rightarrow optical layer

- Optical Network on Chip (ONoC) characteristics
 - high throughput: *Wavelength Division Multiplexing, WDM*
 - long range communications (chip scale)
 - low latency
Related Work and Contribution

- Mesh [4], multistage [2], fat-tree [5], torus [12]
 - waveguide crossings \rightarrow losses (about 0.3dB for the multistage)
Related Work and Contribution

- Mesh [4], multistage [2], fat-tree [5], torus [12]
 - waveguide crossings \rightarrow losses (about 0.3dB for the multistage)
- Ring topology: Corona [1], Firefly [10], FlexiShare [9], ATAC [11]
 - no waveguide crossings and simpler layout
Related Work and Contribution

- Mesh [4], multistage [2], fat-tree [5], torus [12]
 - waveguide crossings → losses (about 0.3dB for the multistage)
- Ring topology: Corona [1], Firefly [10], FlexiShare [9], ATAC [11]
 - no waveguide crossings and simpler layout

Electrical NoC

- resource sharing
+ number of resources
Related Work and Contribution

- Mesh [4], multistage [2], fat-tree [5], torus [12]
 - waveguide crossings → losses (about 0.3dB for the multistage)
- Ring topology: Corona [1], Firefly [10], FlexiShare [9], ATAC [11]
 - no waveguide crossings and simpler layout

Electrical NoC

- resource sharing
- number of resources

Optical NoC

+ no contention in ONoC
- shared access, number of resources
Related Work and Contribution

- Mesh [4], multistage [2], fat-tree [5], torus [12]
 - waveguide crossings → losses (about 0.3dB for the multistage)
- Ring topology: Corona [1], Firefly [10], FlexiShare [9], ATAC [11]
 - no waveguide crossings and simpler layout

Electrical NoC
- resource sharing
+ number of resources

Optical NoC
+ no contention in ONoC
- shared access, number of resources

ORNoC : Optical Ring Network on Chip
+ zero contention (WDM + virtual waveguide partitioning)
+ optimal number of resources
Optical Network Interface (ONI)

- Operation mode:
 - ejection
 - pass through
 - injection
Optical Network Interface (ONI)

- Operation mode:
 - ejection
 - pass through
 - injection

Sébastien Le Beux
October 20th, 2011
Optical Network Interface (ONI)

- Operation mode:
 - ejection
 - pass through
 - injection

Sébastien Le Beux
October 20th, 2011

W. Bogaerts et al.,
IEEE JSTQE, 16(1), 33 (2010)

L. Vivien et al.,
Optics Express, 17, 6252 (2009)
Optical Network Interface (ONI)

- Operation mode:
 - ejection
 - pass through
 - injection

W. Bogaerts et al., IEEE JSTQE, 16(1), 33 (2010)

L. Vivien et al., Optics Express, 17, 6252 (2009)

J. Van Campenhout et al., IEEE PTL, 20, 1345 (2008)
ORNoC in 3D Architecture

Signal Direction

ONI
waveguide
ORNoC in 3D Architecture

ONI waveguide
ORNoC in 3D Architecture

- Communication hierarchy:
 - Electrical NoC → intra-layer communication
 - ORNoC → inter-layer communication
ORNoC in 3D Architecture

- Communication hierarchy:
 - Electrical NoC → intra-layer communication
 - ORNoC → inter-layer communication
How to configure ONI?

- ORNoC benefits: contention free, scalable, low power
How to configure ONI?

- ORNoC benefits: contention free, scalable, low power
- Need for...
 - (high level) layout guidelines
 - ONI area overhead estimation
 - regularity and reuse (x, y and z dimensions)
Layout Guidelines

- **Objective**: take benefits from the regularity of ORNoC
• **Objective**: take benefits from the regularity of ORNoC
Layout Guidelines

• **Objective**: take benefits from the regularity of ORNoC

• **VC_{area}**
 - elementary footprint to consider (worst case)
 - highly technology dependent
Layout Examples

\[WL \]: number of wavelengths
Layout Examples

WL : number of wavelengths

photonic layer

electrical layer

WG : number of waveguides

two waveguides

photonic layer

electrical layer
Layout Examples

WL: number of wavelengths

WG: number of waveguides

L: number of electrical layers

- **photonic layer**
- **electrical layer**
- **shifted identical electrical layers**
- **area allocated to propagate vertical connexions**
- **two waveguides**
Area overhead estimation

• Area used to implement each ONI:

\[\text{ONI}_{\text{area}} = 2 \times \text{VC}_{\text{area}} \times \text{WL} \times \text{WG} \]

• Area overhead used to “propagate” ONI:

\[\text{ONI}_{\text{area_overhead}} = \text{ONI}_{\text{area}} \times (L - 1) \]
Area overhead estimation

- Area used to implement each ONI:
 \[ONI_{area} = 2 \times VC_{area} \times WL \times WG \]

- Area overhead used to "propagate" ONI:
 \[ONI_{area_overhead} = ONI_{area} \times (L - 1) \]

- Total area obtained by considering the number of ONI per layer
Area overhead estimation

Assumptions:
- $V_{C_{\text{area}}}$?
- CMOS driver: $8.5 \mu m \times 9.5 \mu m$ (350 μA current threshold [13] and 0.13 μm CMOS technology [7])
- TSV: $pitch \approx 5 \mu m \times 5 \mu m$ [3]
- Photonic receiver: less than $20 \mu m^2$ [6]
- CMOS receiver footprint < CMOS driver footprint [7]
- Photonic transmitter: microdisk laser radius (7.5 μm [13]), microdisk resonator radius (10 μm), waveguide diameter (1 μm [8])
Area overhead estimation

• Assumptions:
 • $VC_{area} = 10 \mu m \times 18.5 \mu m$
 • initial electrical die size : $491 mm^2$ for 256 cores [11]
 • 2 electrical layers
Area overhead estimation

- Assumptions:
 - $V_{C_{area}} = 10 \mu m \times 18.5 \mu m$
 - initial electrical die size: 491 mm^2 for 256 cores [11]
 - 2 electrical layers
Area overhead estimation

• Assumptions:
 • $VC_{area} = 10\, \mu m \times 18.5\, \mu m$
 • initial electrical die size: $491\, mm^2$ for 256 cores [11]
 • 2 electrical layers

- 32 ONIs $\rightarrow 4 \times 4$ ONIs per electrical layer
 • each ONI is shared by 16 cores
 • 0.5% area overhead
 • reliability-complexity design tradeoff

Sébastien Le Beux
Conclusion and Future Work

• ORNoC
 • suitable for 3D architectures (communication hierarchy)
 • layout guidelines → regularity in x, y and z dimensions
 • ONI area overhead estimation
 • e.g. : 36 ONIs, 2 electrical layers → 0.5% area overhead

• Future work
 • loss modeling and estimation
 • laser power control
 • SERDES footprint
References

A Nanophotonic Interconnect for High-Performance Many-Core Computation.

M. Brière, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot, and I. O’Connor.
System Level Assessment of an Optical NoC in an MPSoC Platform.

Jason Cong and Yan Zhang.
Thermal-driven multilevel routing for 3-D ICs.

A Novel Optical Mesh Network-on-Chip for Gigascale Systems-on-Chip.

Huaxi Gu, Jiang Xu, and Wei Zhang.
A Low-Power fat Tree-Based Optical Network-on-Chip for Multiprocessor System-on-Chip.

George Kurian, Jason E. Miller, James Psota, Jonathan Eastep, Jifeng Liu, Jurgen Michel, Lionel C. Kimerling, and Anant Agarwal.
ATAC : a 1000-Core Cache-Coherent Processor with on-Chip Optical Network.

David Navarro, Matthieu Briere, Ian O’Connor, Fabien Mieyeville, Frédéric Gaffiot, and Laurent Carrel.
Quantitative Study of Area and Power Consumption Costs for 3 Gbits/s Optical Communications in a 0.13µm CMOS Circuit.
Optical Network Interface (ONI)

- Operation mode:
 - ejection
 - pass through
 - injection

![Diagram of ONI components]

Signal direction

- laser
- on-chip laser
- photodetector
- microresonator
How to configure ONI?

- Which waveguide partition?
- Which wavelength?
How to configure ONI?

- Which waveguide partition?
- Which wavelength?
How to configure ONI?

- Which waveguide partition?
- Which wavelength?
How to configure ONI?

- Which waveguide partition?
- Which wavelength?
How to configure ONI?

- ORNoC benefits: contention free, scalable, low power

Waveguide
Optical layer (ORNoC)
Electrical layers
How to configure ONI?

- ORNoC benefits: contention free, scalable, low power
- Need for...
 - (high level) layout guidelines
 - ONI area overhead estimation
 - regularity and reuse (x, y and z dimensions)
ORNoC in 2D Architecture

- Communication hierarchy:
 - Electrical NoC → intra-cluster communication
 - ORNoC → inter-cluster communication
ORNoC in 2D Architecture

- Communication hierarchy:
 - Electrical NoC → *intra-cluster* communication
 - ORNoC → *inter-cluster* communication

Connectivity Matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- 0 → no communication
- 1 → communication required